
Masterless Distributed
Applications With Riak Core

Tim.Tang May 2016

1

Why Riak Core?

2

Distributed, Scalable, Failure-tolerant

Why Riak Core?

3

Distributed, Scalable, Failure-tolerant

No central coordinator.
Easy to setup/operate.

Why Riak Core?

4

Distributed, Scalable, Failure-tolerant

Horizontally scalable.
Easy add more physical nodes.

Why Riak Core?

5

Distributed, Scalable, Failure-tolerant

No single point of failure.
Self-healing.

Why Consistent Hash?
• Limits reshuffling of keys when

hash table data structure is
rebalanced (Add/Remove Nodes).

• Uses consistent hashing to
determine where to store data on
a primary replica as well as
fallbacks if the primary is offline.

6

Why Consistent Hash?

7

Add Node 4Remove Node 3

Concepts: The Ring

8

Concepts: Virtual Node
• One Erlang process per partition in the

consistent hashing ring.
• One partition may have multi-vnodes.
• Fundamental unit of replication, fault

tolerance, concurrency.
• Receives work for its portion of the hash

space.

9

Concepts: Virtual Node Master
• Keep track of all active vnodes on its node

receives messages from coordinating FSMs.
• Translates partition numbers to local PIDs

and dispatches commands to individual
vnodes.

• One vnode_master per Physical Node.

10

Concepts: N/R/W
• N = number of replicas to store (on

distinct nodes)
• R = number of replica responses

needed for a successful read per-request
• W = number of replica responses

needed for a successful write perrequest

11

Concepts: N/R/W

12

Concepts: N/R/W

13

Concepts:Preference List

14

Concepts:Read Repair

15

• If a read detects that a vnode has stale
data, it is repaired via asynchronous
update.

• Passive Anti-Entropy, helps implement
eventual consistency.

Concepts: VClock

16

Ops NodeA(midi1@127.0.0.1) NodeB(midi2@127.0.0.1) NodeC(midi3@127.0.0.1)

NodeA +500 500 [{A,1}] 500 [{A,1}] 500 [{A,1}]

NodeA +200 700 [{A,2}] 700 [{A,2}] 700 [{A,2}]

NodeC + 300 1050 [{A,2}, {C,1}] 1050 [{A,2}, {C,1}] 1050 [{A,2}, {C,1}]

Network Split -- (A,B), (C)
NodeC + 100 1050 [{A,2},{C,1}] 1050 [{A,2},{C,1}] 1150 [{A,2}, {C,2}]

NodeB + 500 1550 [{A,2}, {B,1}, {C,1}] 1550 [{A,2}, {B,1}, {C,1}] 1150 [{A,2}, {C,2}]

Network Repaired -- (A,B,C)
NodeA + 50 1600 [{A,3}, {B,1}, {C,1}] 1600 [{A,3}, {B,1}, {C,1}] 1200 [{A,3}, {C,2}]

Get Request On NodeA, How To Merge Results?

Concepts:VClock

17

• Last Write Wins (LWW)
• Allow multiple versions to coexist, caller

reconcile the versions with full context.
• Use riak_dt module to handle data

conflicting.

Concepts:Handoff

18

• Handoff Types:
• Ownership: occurs when a new node joins

the cluster or the vnode needs to be moved.
• Hinted: occurs when a "fallback" vnode took

the responsibility for a "primary" vnode but
the primary vnode is reachable again.

• Repairs: repair handoff happens when your
application explicitly calls
riak_core_vnode_manager:repair/3.

• Resize: > Riak core 2.0, riak_core_ring:resize().

MisConcepts:Fallback

19

• One Physical Node down, all
vnodes(primary) on this physical node status
will fallback to another physical node. Switch
to type fallback.

• Fallback is never performed by another
partition, it goes to another node but keeps
the index.

• For some time fallback and primary vnodes
coexists.

Routing With Consistent Hash

20

Adding A Node

21

Traditional Router

22

Riak Core Router

23

How Do The Routers Reach Agreement?

24

• Each node has one copy of ring cache.
• Compare ring state strictly by gossip protocol.
• Ring knows each vnode status.

What We Get “Out Of Box”
• Physical Node cluster state management.
• Ring state management.
• Vnode placement and replication.
• Cluster and ring state gossip protocols.
• Consistent hashing utilities.
• Handoff activities, covering set callbacks.
• Rolling upgrade capability.
• Key based request dispatch.
• etc…

25

Building An Application On Riak Core

• MIDI demo => https://github.com/tim-tang/midi
• Reference:

• http://marianoguerra.github.io/little-riak-core-book/
index.html

• Rebar3 => https://www.rebar3.org/
• rebar3_template_riak_core => https://github.com/

marianoguerra/rebar3_template_riak_core
• Riak Core source => https://github.com/basho/

riak_core
• Erlang/OTP 18.

https://github.com/tim-tang/midi
http://marianoguerra.github.io/little-riak-core-book/index.html
https://www.rebar3.org/
https://github.com/marianoguerra/rebar3_template_riak_core
https://github.com/basho/riak_core

Riak Core Pitfalls

• Cluster membership is controlled
by a human, even when a node
failure has been (correctly)
detected by the cluster manager.

• Vnode distribution around the ring
is sometimes suboptimal.

Is it a good fit?
• It expects you to have a "key" that

links to a blob of data or service.
• The key (or rather its chash)

determines its primary vnode and
adjacent replicas.

• The data itself is opaque and has
application context.

Not Mentioned
• Merkle Trees (AAE): https://

github.com/basho/riak_core/blob/
develop/docs/hashtree.md

• Ring Resizing: https://github.com/
basho/riak_core/blob/develop/
docs/ring-resizing.md

https://github.com/basho/riak_core/blob/develop/docs/hashtree.md
https://github.com/basho/riak_core/blob/develop/docs/ring-resizing.md

References

• Riak Core Confliction resolution => https://
github.com/tim-tang/try-try-try/tree/master/
04-riak-core-conflict-resolution

• CRDT LASP => https://github.com/lasp-lang/
lasp

• Why Vector Clock are Easy => http://
basho.com/posts/technical/why-vector-clocks-
are-easy/

https://github.com/tim-tang/try-try-try/tree/master/04-riak-core-conflict-resolution
https://github.com/lasp-lang/lasp
http://basho.com/posts/technical/why-vector-clocks-are-easy/

Thanks!

Q&A.
31

